Basic information				
Course Code:	PHS:1105			
Course title :	Biophysics			
Academic year:	1 st year students, 2018/2019			
Program title:	B. Sc. Veterinary Medical sciences			
Contact hours/ week/semester:	4 h /week (Lecture: 2 h/week, Practical: 2h/week)			
Last date of course specification approval				
2-Professional information				

Overall aims of course:

This course aims to:

1- Analyze the principles of heat and properties of matter and interpret main idea of simple harmonic motion, concepts of fluid flow, temperature and Stefan-Boltzmann law.

- 2- Differentiate between the kinetic energy and potential energy.
- 3- Compare between different methods of heat transfer

3- Write a short report in a written form and orally using appropriate scientific language and time management.

3- Intended learning outcomes of course (ILOs)

a- Knowledge and understanding:

By the end of this course the student should be able to:

a1. Define some physical quantities

a2. Describe how the refrigeration can operate.

a3. Define Hook's law, Archimedes's law, Pascal's law, Stefan's law, Newton's law, and the first and second laws of thermodynamics.

a4. Identify the validity of formulae from the point of view of dimensions.

a5. Describe some physical equation of motion, and equations of static and dynamic fluids.

B-Intellectual skills

By the end of this course the student should be able to:

b1. Illustrate physical quantities (centripetal acceleration, strain, stress, young's modulus, specific heat, latent heat, melting point of ice)

b2. Discuss the specific heat of solid.

b3. Explain the energy and work in thermodynamics.

b4. Distinguish the regions in Hooke's law and the regions of elasticity

b5. Summarize the different types of motions of solids and liquids, and different methods of heat transfer

C-Professional and practical skills

By the end of this course the student should be able to:

c1. Determine the different types of elasticity, liquids, thermometers, latent heat

c2. Use some figures to show the relations between the different physical quantities.

D-General and transferable skills

By the end of studying the course, the student should be able to:

d1. Write a short report in a written form -using library or Internet resources.

d2. Work in a group and learning time management.

4-Topics and contents

Course	Topics	No. of hours	Lec.	Practical
ľ	Introduction	2	1	
ntte ing	Mechanics I	3	1	
ms vini	Mechanics II	3	1	
s of trs vee	Elasticity	3	1	
ties sek, h/v	States of matter	3	1	
per /we 1	Archimedes's principle, surface tension.	3	1	
roj 2h	Motion of fluids	3	1	
Γ	Viscosity.	2	1	
50	Heat and Energy	2	1	
nin	Thermal expansion, thermal stresses heat	3	1	
raiı	capacity.			
k tı sek	Heat transfer	3	1	
vee /we	Radiation, Stefan-Boltzmann law, the ideal	3	1	
h/v 1h	radiator.			
t 2	The first law of thermodynamics I	3	1	
Iea	The first law of thermodynamics II	3	1	
ł	The second law of thermodynamics	3	1	
	Introduction	1		1
	Simple pendulum	1		1
sk	Hooks law	1		1
wee	Resonance Tube	1		1
4h/	Archimedes law	1		1
ics .	Surface tension	1		1
iysi	Viscosity of a liquid	1		1
l pł	Specific heat of solid	1		1
tica	Latent heat of ice	1		1
raci	Latent heat of wax	1		1
$\mathbf{P}_{\mathbf{I}}$	Newton's law of cooling	1		1
	Jules law	1		1
	Mechanical equivalent of heat	1		1

5-Teaching and learning methods

-Lecture using Board and Data Show

-Experimental Models

-Discussion groups

- Quizzes, home works, exercises and exams.

6-Special teaching and learning methods for exceptional students

Office hours and special meeting

7-Student assessment

7.1. Assessments methods:

	Matrix alignment of the measured ILOs/ Assessments					
Method	ods					
	K&U	I.S	P&P.S	G.S		
Homework exercises	a1, a2,a4	b1,b5		d1d2		
Oral discussions	a2,a3,a5	b2,b3,b4,b5				
Quizzes	a1,a3,a5	b1,b2,b5				
Mid- term examination	a1, a4,	b1,b4,b5				
Practical exam	a1, a4	b1,b4	c1,c2			
Final examination	a1, a2,a3,	b1, b2, b3,				
	a4,a5	b4,b5				

7.2-Assessment schedules/semester

Method	Week(s)		
Practical exams	13		
Final exam	15		
Student activity	Every week		

7.3-Weight of assessments

Assessment	Weight of assessment
Final-term Examination	50
Practical Examination	40
Student activity	10
Total	100%

8- List of references

8.1.Notes and books

- Departmental notes on Heat

- Departmental notes on properties of matter

- Departmental notes on practical physics

8.2. Essential books:

- 1-Robert Oman and Daniel Oman, "How to solve Physics Problems", McGraw-Hill, 1984
- 2- F. Bueche, "Principles of Physics", McGraw-Hill, 1974
- 3- Serway, "Physics for Scientists and Engineers", Saunders publishing, 1996.

8.3. Recommended texts

N/A

8.4. Journals, Websitesetc

N/A

Journals:

Websites:

Course Coordinator

Head of Department

College

Dr. Mostafa Ali

	Торіс	Week	Intended learning outcomes of course (ILOs)			
			K&U(a)	I.S(b)	P.P.S (c)	G.T.S (d)
	Introduction	1	a1,a4	b1	c1	d1
tter	MechanicsI	2, 3	a1, a4	b1	c1	d1
ma	MechanicsII	4, 5	a1,a4,a5	b1,b5	c1	d1,
of veel	Elasticity	6, 7	a1,a3,a4,a5	b1,b4	c1	d1
ties h/v	States of matter	8,9	a1, a3	b1,b5	c1	d1
ber 3	Archimedes principle, surface tension.	10, 11	a1, a3,a4,a5	b1		d1
Pro	Motion of fluids	12, 13	a1, a4	b1, b5	c1	d1
,	Viscosity.	14	a1, a4,a5	b1, b4	c1	d1
	Heat and Energy	1	a1,a4	b1	c1	d1
	Thermal expansion, thermal stresses, heat capacity.	2, 3	a1, a2	b1,b2, b5	c1	d1,
Heat 3h/weel	Heat transfer	4, 5	a1,a4,a5	b1,b5	c1	d1
	Radiation, Stefan-Boltzmann law, the ideal radiator.	6, 7	a1,a3 a5	b1,b5		d1
	The first law of thermodynamics I	8,9	a1,a3, a4	b1,b3		d1
	The first law of thermodynamics II	10, 11	a2, a3,a5	b1,b3		d1
	The second law of thermodynamics	12, 13	a1, a3	b1,b3		d1
	The Carnot theorem and conversion of energy.	14	a2, a3	b1,b3		d1
	Introduction	1	a1,a3	b1	C1,c2	d2
X	Simple pendulum	2	a1,a5	b1	C1,c2	d2
wee	Hooks law	3	a1,a3	b1	C1,c2	d2
4h/	Resonance Tube	4	a1,a5	b1	C1,c2	d2
CS	Archimedes law	5	a1,a3	b1	C1,c2	d2
iysi	Surface tension	6	a1	b1	C1,c2	d2
l pł	Viscosity of a liquid	7	a1	b1	C1,c2	d2
iica	Specific heat of solid	8	a1,a4	b1	C1,c2	d2
ract	Latent heat of ice	9	a1,a4	b1	C1,c2	d2
P1	Latent heat of wax	10	a1,a4	b1	C1,c2	d2
	Newton's law of cooling	11	a1,a3	b1	C1,c2	d2

Jules law	12	a1,a3	b1	C1,c2	d2
Mechanical equivalent of heat	13	a1,a3	b1	C1,c2	d2